Programmation Embarquée Programming embedded systems			
Code cours Course code: PE5		Crédits ECTS ECTS Credits: 2	
Département Department	: IA	Cours Lectures	: 10H
Coordonnateurs Lecturers	: E. GROLLEAU	T.D. Tutorials	: 10H
		T.P. Laboratory sessions	:
Période Year of study	: 3 ^{ième} année 3 rd year	Projet Project	:
		Non encadré Homework	:
Semestre Semester	: $5^{\text{ième}}$ semester – A 5^{th} semester - A	Horaire global Total hours	: 20H
Evaluation Assessment method(s)	: 1 examen écrit, 1 written exam		
Langue d'instruction Language of instruction	: Français French		
	: Obligatoire Compulsory		
Type de cours <i>Type of course</i>			
·- ·	: Avancé graduate		
Niveau Level of course			

Compétences attendues :

- Détecter les problèmes potentiels lors du ciblage des programmes embarqués sur différentes architectures matérielles, nécessite les connaissances de :
 - o Grandes familles de calculateurs et leurs différences (32 vs 64 bits, utilisation de la pile d'appel, FPU, architectures vectorielles);
 - o L'impact de l'architecture sur la représentation mémoire (tailles de représentation entiers, alignement sur les mots mémoire, etc.)
 - o L'impact des optimisations locales sur la durée d'exécution (mémoires caches, RAM, pipeline, prefetch, etc.)
 - o Connaître les spécificités des processeurs multicoeurs et pluricoeurs
- Savoir utiliser un système d'exploitation temps réel (RTOS). Nécessite les connaissances :
 - Généralités sur les systèmes d'exploitation temps réel (RTOS) et leurs grandes différences par rapport aux systèmes généralistes
 - Différentes études de cas de RTOS différents
- Programmer avec les bonnes pratiques en C (par exemple MISRA-C)
- Implémenter une application temps réel sur des RTOS.
 - o Connaissance de plusieurs API de RTOS différents
- Traduire une conception exprimée dans un ADL (Architecture Design Language) vers différents RTOS, et connaître les limitations imposées par certains de ces RTOS

Pré-requis:

- Cours Architecture et Systèmes d'exploitation (type ISE)
- Cours de spécification/conception de systèmes temps réel (type SE)
- Bases de programmation en C

Contenu:

- Architectures matérielles
 - o Le goulot d'étranglement de la mémoire des architectures Harvard/von Neumann à nos jours (banques SDRAM) et mémoires cache
 - Le partitionnement mémoire par mémoire virtuelle
 - Structure interne d'un processeur
- Architectures parallèles
 - Hyper-threading
 - Multicoeur
 - o Architecture MPSoC hétérogènes
 - o Pluricoeur
- Architectures logicielles
 - o RTOS vs GPOS
- La norme MISRA-C et les métriques de caractérisation du code
- Programmation sur RTOS
 - o Norme POSIX pthread
 - o La norme AUTOSAR classic
 - o Le RTOS VxWorks
 - o La norme ARINC 653

Bibliographie:

- E. Grolleau, J. Hugues, Y. Ouhammou, H. Bauer, « Introduction aux systèmes embarqués temps réel, Conception et mise en œuvre », Dunod, 2018
- F. Cottet, E. Grolleau, S. Gérard, J. Hugues, Y. Ouhammou, S. Tucci-Piergiovanni, « Systèmes temps réel embarqués 2e édition, Spécification, conception, implémentation et validation temporelle », Dunod, 2014

Expected competencies:

- Detect problems when porting a program on an embedded target
- Use a Real-Time Operating System (RTOS)
- Safe C programming with MISRA-C
- Implement a real-time system on different types of RTOS
- Translate from a design expressed in an ADL (Architecture Design Language) to different types of RTOS, and know what kind of limits can apply

Prerequisites:

- Architecture and operating systems
- Design of systems using a software life cycle
- Basic C programming

Content:

- Hardware architectures
 - o Parallel architectures (Hyper-threading, multicore, heterogeneous MPSoCs, manycore)
- Software architectures
 - RTOS vs GPOS
- MISRA-C standard
- Programming on different types of RTOS
 - o POSIX pthread standard
 - AUTOSAR classic standard
 - o VxWorks
 - o ARINC 653 standard

Recommended reading:

- E. Grolleau, J. Hugues, Y. Ouhammou, H. Bauer, « Introduction aux systèmes embarqués temps réel, Conception et mise en œuvre », Dunod, 2018
- F. Cottet, E. Grolleau, S. Gérard, J. Hugues, Y. Ouhammou, S. Tucci-Piergiovanni, « Systèmes temps réel embarqués 2e édition, Spécification, conception, implémentation et validation temporelle », Dunod, 2014