Semester 2 Major: Energetics and Propulsion (EPROP)

Fluid mechanics

r futu incentaines			
Course code: AFM2		ECTS Credits: 5	
Department	: MFA	Lectures	: 15h00
Lecturers	: M.Meldi	Tutorials	: 15h00
Year of study	: 1 st year	Laboratory sessions	: 09h00
Semester	: 2 nd semester	Project	:
Assessment method(s	: 1 written test, 1 practical work test	Home works	:
Language of instruction	: English	Total hours	: 39h00
Type of courses	: Compulsory		

Objective: To give the students not only a basic technical background but also physical and phenomenological bases that will enable them to handle complex problems.

Prerequisites: Basic fluid dynamics

Content:

1. Physical mechanisms and flow models

- Description of a fluid
- Balance equations
- Models of flow motion
- 2. Incompressible viscous flows
 - Important physical properties
 - Characteristic scales
 - Examples of exact solutions
 - Elementary notions of flow stability analysis

3. Laminar boundary-layer

- Localisation of viscous effects in High Reynolds number flows
- Boundary layer characteristic parameters
- Prandtl equations;
- Integral balance: Von Karman equation
- Boundary layer on a flat plate
- Effect of a pressure gradient
- Flow separation and its consequences

Recommended reading:

H. Oertel, *Prandtl's essentials of fluid mechanics*, Springer, 2003 D.J. Tritton, *Physical fluid dynamics*, Oxford Science Publications, 1998

4. Turbulent flows, an introduction

- Mean flow equations
- Physical consequences of turbulent agitation
- Concept of turbulent diffusivity; near wall flows
- 5. Compressible flow of a perfect fluid
 - Introduction
 - Description of compressible and inviscid flows
 - Stagnation quantities
 - Steady one-dimensional compressible flow