Gas dynamics			
Course code: AGD2		ECTS Credits: 5	
Department	: MFA	Lectures	: 12h30
Lecturers	: E. Goncalvès	Tutorials	: 13h45
Year of study	: 1 st year	Laboratory session	: 12h00
Semester	: 2 nd semester	Project	:
Assessment method(s)	: 1 written test, 1 practical work test	Home works	:
Language of instruction	: English	Total hours	: 38h25
Type of courses	: Compulsory		

Objective: Understanding of the physics of shock waves and expansion waves. Application to internal aerodynamics

Prerequisites: Basic fluid mechanics, with isenropic compressible flows. Basic knowlegde on hyperbolic PDE's and systems

5.

Content:

- 1. Shock waves
 - Jump relations
 - Normal shock wave
 - Oblique shock wave
- 2. One-dimensional unsteady compressible flows
 - Cauchy problem
 - Method of characteristics
 - Simple-wave flows
 - Shock formation
- 3. Two-dimensional stationary supersonic flows
 - Method of characteristics
 - Simple-wave flows
 - Prandtl-Meyer expansion

Recommended reading:

- J.D. Anderson Jr., Modern compressible flow: with historical perspective, McGraw Hill, 2002
- S. Candel., Mécanique des fluides, Dunod, 1995
- I. Ryhming, Dynamique des fluides, Presses Polytechniques et Universitaires Romandes, 2004 (3e edition)

4. Air intakes

- Critical and supercritical regimes
 - Adaptation
- Head losses in subsonic flow
- Supersonic nozzles - Boundary layer and displacement effect
- Boundary layer and displaced
 Flow rate and thrust
- Adaptation and separation

ABACK