High Temperature Alloys			
Course code: AHT3		ECTS Credits: 2	
Department	: MSISI	Lectures	: 15h00
Lecturers	: G. Hénaff	Tutorials	:
Year of study	: 2 nd year	Laboratory sessions	:
Semester	: 3 rd semester	Project	:
Assessment method(s)	: 1 written test	Home works	:
Language of instruction	: English	Total hours	: 15h00
Type of courses	: Compulsory		

Objective: Overview of alloys used in high-temperature applications: Titanium-, Nickel- and Cobalt-based alloys, Intermetallics, Silicides

Prerequisites: Materials Science & Engineering

Content:

Metallurgy and microstructure optimization for improved mechanical properties (tensile, creep, fatigue, dwell-fatigue, crack propagation) of the following classes of alloys:

- Titanium-based alloys
- Nickel-based superalloys (Polycristalline, Directionnaly Solidified and Single Cristalline alloys)
- Cobalt-based alloys
- Intermetallics (TiAl, FeAl alloys, ...), Silicides, Niobium based alloys

Recommended reading:

The Superalloys – Fundamental and Applications, R.C. Reed, Cambridge University Press, 2006

BACK