Semester 3 Major Energetics and Propulsion (EPROP)

Turbulence			
Course code: ATU3	ECTS Credits: 2.5		
Department	: MFA	Lectures	: 15h00
Lecturers	: J. Borée	Tutorials	: 15h00
Year of study	: 2 nd year	Laboratory sessions	:
Semester	: 3 rd semester	Project	:
Assessment method(s)	: 1 written test	Home works	:
Language of instruction	: English	Total hours	: 30h00
Type of courses	: Compulsory		

Objective: To give the students a good physical and phenomenological understanding and to introduce the strength and limitations of standard and advanced turbulence models

Prerequisites: Advanced fluid mechanics

Content of courses

- 1. Introduction
- 2. Statistical description of the turbulent flows
- 3. Mean-flow equations
- 4. Mean and turbulent kinetic energy budgets

Content of the classes

- 1. Turbulent mixing: application to the internal combustion engine
- 2. Statistical convergence for the measurement of a turbulent flow
- 3. Energy cascade and Kolmogorov hypotheses
- 4. Budgets of the Reynolds stresses
- 5/6. Homogeneous turbulence. Its distortions in liaison with the development of models
- 7/8. Self-preserving turbulent plane wake
- 9/10. Wall flows. Physical analysis and modelling
- 11/12. Numerical computation of a plane channel flow. On the use of law of the wall closures

Recommended reading:

- S.B. Pope, Turbulent flows, Cambridge University Press, 2000
- P. Chassaing, Turbulence en mécanique des fluides, Editions Cepadues, 2000

- 5. The scales of turbulent motion
- Free shear flows
 Wall flows
- 8. Modelling and simulation of turbulent flows