Programmation Embarquée Programming embedded systems			
Code ECUE Course code:	PEM	UE: UE5-2y	
Département Department	IA	Cours Lectures	10h00
Coordonnateurs Lecturers	E. Grolleau	T.D. Tutorials	10h00
Période Year of study	A3	T.P. Laboratory sessions	
Semestre Semester	S5	Projet Project	
Evaluation Assessment method(s)	1 écrit	Non encadré Unsupervised	
Langue d'instruction Language of instruction	Français	Horaire global Total hours	20h00
Type de cours Type of course	Obligatoire	Travail personnel Homework	07h00
Niveau Level of course	Second cycle universitaire Graduate	•	

Compétences attendues :

- Détecter les problèmes potentiels lors du ciblage des programmes embarqués sur différentes architectures matérielles, nécessite les connaissances de :
 - o Grandes familles de calculateurs et leurs différences (32 vs 64 bits, utilisation de la pile d'appel, FPU, architectures vectorielles);
 - o L'impact de l'architecture sur la représentation mémoire (tailles de représentation entiers, alignement sur les mots mémoire, etc.)
 - L'impact des optimisations locales sur la durée d'exécution (mémoires caches, RAM, pipeline, prefetch, etc.)
 - O Connaître les spécificités des processeurs multicoeurs et pluricoeurs
- Savoir utiliser un système d'exploitation temps réel (RTOS). Nécessite les connaissances:
 - Généralités sur les systèmes d'exploitation temps réel (RTOS) et leurs grandes différences par rapport aux systèmes généralistes
 - o Différentes études de cas de RTOS différents
- Programmer avec les bonnes pratiques en C (par exemple MISRA-C)
- Implémenter une application temps réel sur des RTOS.
 - o Connaissance de plusieurs API de RTOS différents
- Traduire une conception exprimée dans un ADL (Architecture Design Language) vers différents RTOS, et connaître les limitations imposées par certains de ces RTOS

Pré-requis :

- Cours Architecture et Systèmes d'exploitation (type ISE)
- Cours de spécification/conception de systèmes temps réel (type SE)
- Bases de programmation C

Contenu:

- Architectures matérielles
 - O Le goulot d'étranglement de la mémoire des architectures Harvard/von Neumann à nos jours (banques SDRAM) et mémoires cache
 - o Le partitionnement mémoire par mémoire virtuelle
 - O Structure interne d'un processeur
- Architectures parallèles
 - O Hyper-threading
 - o Multicoeur
 - Architecture MPSoC hétérogènes
 - o Pluricoeur

- Architectures logicielles
 - o RTOS vs GPOS
- La norme MISRA-C et les métriques de caractérisation du code
- Programmation sur RTOS
 - o Norme POSIX pthread
 - o La norme AUTOSAR classic
 - o Le RTOS VxWorks
 - o La norme ARINC 653

Bibliographie:

- \bullet E. Grolleau, J. Hugues, Y. Ouhammou, H. Bauer, « Introduction aux systèmes embarqués temps réel, Conception et mise en œuvre », Dunod, 2018
- F. Cottet, E. Grolleau, S. Gérard, J. Hugues, Y. Ouhammou, S. Tucci-Piergiovanni, « Systèmes temps réel embarqués 2e édition, Spécification, conception, implémentation et validation temporelle », Dunod, 2014